《除数是两位数的除法》教学反思 [精品]
身为一位优秀的老师,教学是重要的工作之一,借助教学反思我们可以快速提升自己的教学能力,优秀的教学反思都具备一些什么特点呢?下面是小编精心整理的《除数是两位数的除法》教学反思 ,仅供参考,大家一起来看看吧。
《除数是两位数的除法》教学反思 1本节课我在确定教学目标时注重整体性。回忆算理算法,熟练技能;沟通知识间的内在联系,重新建构知识网络;通过问题解决,训练学生多向思维,培养学生合作意识和情感价值观。把学生的终身可持续发展作为数学教育的根本目的。
“加强口算、淡定笔算、重视估算、注重算法多样化”这是计算教改的方向。课标指出“应让学生在具体运算和解决简单实际问题的过程中体会乘与除的互逆关系。”因此本课在设计过程中没有把笔算的方法、技能作为复习的重点,而是让学生“体会、运用”乘除法的关系作为一项重要的`教学目标贯穿在全课之中。通过小红、小亮、小明不同的计算结果的批改及根据小亮的正确算式1998÷54=37口算1999÷54=()……()等,让学生自觉运用乘除法之间的关系进行估算、验算、灵活解决实际问题,这样不仅使学生的计算能力有了较大的提高,而且学生思维的灵活性、创造性得到了良好培养。
数学思想方法是指在认识或处理各种数学或者非数学现象的思维过程中,所表现出来的种种数学观念及思维方式。在课堂教学中渗透数学思想方法的教学,使学生掌握基本数学思想和方法不仅使学科学习变得容易,而且对于学生将来从事的工作,随时随地发生作用,使他们受益终生。在本堂课的教学设计中,有机渗透了分类思想(把8个算式按不同的标准进行分类),函数思想(除数不变的情况下如何判断商的大小),极限思想(有没有最大、最小值,如有分别是多少)估计思想(谁的计算结果是正确的,哪一个商最大等)等。通过对各种数学思想方法的渗透教学,使学生真正学会数学的思考。如借助分类思想,使学生很好地把试商方法、估商方法、计算方法、乘除互逆关系有机地整合起来。
数学源于生活,应用于生活。我在课堂上努力使学生身临其境,体验生活、感悟数学。
《除数是两位数的除法》教学反思 2开学第一单元教学了除数是两位数的除法,由于这是新教材,所以这一册没教过,我用很多课余时间用心研究教材,希望能吃透教材,教好学生。但是在作业中却发现全对者寥寥无几,于是课后把学生的作业一本本翻出来,一题题查看错误原因,希望找到改进的方法。
通过我对学生每本作业的翻看,发现学生对除法的计算方法基本掌握,绝大多数学生是商与除数相乘时出错,这反映了学生两位数乘一位数的口算没过关。有些学生乘对了,在被除数减除数乘商的积时又出错,看来减法计算掌握的也不太好。少数学生把除数看作整十数试商时,没有用商乘原来的除数,而是乘了整十数。还有学生抄错题,横式上漏写商或余数,还有的因自己书写不整洁而搬错,看错,还有的学生竖式写到一半就不写了,看来当时分心了。极个别学生除法不会计算。
针对这些问题,在教学中还要加强以下几个方面:
1、强化口算训练。以前没有明确提出口算的.重要性,但教师们都能将口算作为一项常规来抓,课改以后却很少有时间再来练习口算。所以加强口算不能停还是要落实在平时的每节课中。口算是笔算的基础,每天花上十分钟进行口算练习是必要的,只要坚持,相信学生的口算能力就会明显提高。
2、适当增加关于计算的训练量。现在的《补充习题》已经关注到这一问题,四年级上册的《补充习题》对每课时计算设置了两课时的作业,在某种程度上弥补了课本练习相对不足的问题。但是在专项的计算内容教学以外,教师还要时刻关注学生的计算训练,每天练一下。
3、做好各学段的计算教学的衔接工作。只有所有数学教师都重视计算,将计算作为学生的基本能力来抓,才能使学生的计算能力逐步得到提升。必要时也可以进行速算、口算的班内比赛。
《除数是两位数的除法》教学反思 3除数是一个两位数字笔算术除法是第四版的人类教育版本的第73 - 80年的教学内容,在本课中我做了以下反思:
除数是一个两位数的除法,是学习整数除法的主要阶段,学生先前研究的除数是一个数字,业务是一个数字或双倍数除法,这部分知识有一定的知识。本课程旨在让学生回忆上一次的知识,特别是计算方法的分割,通过审查旧的知识,巩固除数的实践是一位数的师,以帮助本课完成教学任务有效。本课的教学重点是确定业务的`位置,除了秩序和尝试业务方法,细分除数的除数是两位数除法的规律,以帮助学生解决计算的算术;困难的是试验方法。这一课是基于一个类的计算,不仅有一个强大的数学知识的计算,以及训练学生尝试纠正,正确的写作,仔细计算的习惯发展。之前教学预计学生可能会出错:1,不会尝试做,不知道写在哪里; 2,被分配的前两个如果不够(不够)1;如何做股利?因为我在上课前和学校做了很多准备学生可能会在课堂上遇到问题,准备通过个人委员会,独立实践,小组竞赛等教学策略去学习知识,正确把握计算方法,打破了考试的困难。
我认为这一课有以下优点:
1,在审查中质疑了新的领先。通过介绍审查学生试图做一个,为了刺激学生的学习兴趣,对新班也奠定了良好的基础;
2,给学生留足够时间探索。新课程标准强调以人为本,发挥学生的主动性。这个课程允许学生尝试找到一种独立解决问题的方法。学生的结果发现,该方法被发现是多样的,教师不把这个课程的概念强加给学生,而是尊重每个学生的个性发展;
3,实践设计水平,有趣,实践设计不仅注重巩固基础知识,而且还导致学生积极参与实践,采用不同的练习方法培养学生竞争意识。
4,全班学生可以主动积极参与教学活动,分享教学成果,感受数学的成功,带来自己的成功分享成功的喜悦;本课缺乏的方面:
1,学生的学术实力估计太高,有几个学生没有抓住正确的解决方案
2,方法的实践,虽然形式,但强度不是;
3,学生评价不能立即,评价方法单一;
4,整个方法;
5,不能专注于所有学生,班级时间分配控制不和谐,前后松散后紧。
教学和学习,教没有固定的法律,既然我们选择教导和教育这条路,我们就会下雨,下雨,不断研究,不断反映,不断提高。
《除数是两位数的除法》教学反思 4今天上了一节复习课,复习的主要内容是第六单元《除数是两位数的除法》,这个单元的重点比较明显,一是能够正确计算除数是两位数的竖式除法,二是掌握商变化的规律,并能应用规律进行简便计算。看似简单的内容,复习起来可是有难度的。计算题范围广泛,只能将算理重复讲解,真正计算时,依然会有很多同学马虎,不是商的位置错了,就是试商时不合适,更多的是商和除数的乘积也会出错。看着他们的计算题,漏洞百出,我都不知道该从何讲起 ……此处隐藏5323个字……建起新旧知识间的联系
1、抓住新旧知识的连接点,激活旧知,为新知作好铺垫。复习题设计设计了学生参加环保小组的练习,不仅复习回顾了上节课所学的笔算除法,而且以此引入了本课的新知,衔接紧密。
2、比较新旧知识的异同,引导学生主动探索新知识。新旧知识之间既有相互贯通的地方,也有不同之处。而这种不同点往往正是旧知识的发展与提高,所以武老师适时地抓住了新旧知识的连接点,通过新旧知识的比较引导学生主动探索新知识,从而获取新知识,体验独立发现的愉悦。课上我先让学生回忆除数是一位数除法的计算过程,孩子们能够说出要先从最高位开始除起,最高位不够除,就要看前两位,除到哪一位就把商写在哪一位。
在学习除数是两位数的除法的笔算时,学生已经有了口算的基础,在试商时,学生按老师要求先把想的内容写下来,例如:245÷60=?想:60×4=240,240最接近245,所以商试4。再例如:189÷29=?想:把29看成30的话,30×6=180,180最接近189,那么商试6。接着还需理解两位数除法中,前两位不够除时,看前三位,商写在个位;而当前两位够除时,就要先除前两位、商写在十位,例如:318÷15=?就是这样。通过多次巩固商书写的位置和除的顺序的基本问题学生基本解决。之后着重解决试商的问题。教材中安排了四组例题,分层次、分阶段分化了重点,分散了难点。例1主要解决试商、商的书写位置等问题;通过例2的教学使学生学会用四舍五入法把除数看作整十数来试商。例3的教学要使学生认识到要根据具体的情况采用不同的方法来试商。例4教学商是两位数的除法。学生初步学习除数是两位数的笔算除法,用四舍五入把除数看作和它接近的整十数进行试商时,在试商过程中,一般都要调商,往往要经过多次调试方能求出商数来。尽管教学时总结出了“用四舍”时,因把除数看小了,初商容易偏大,试商时可比原来想的商小1,而“五入”时,因把除数看大了,初商容易偏小,试商时可比原想的商大1。而学生在具体的计算中,还是感到很困难,造成了试商速度慢。
课上,特别针对试商、调商进行了大量练习,尤其是对于除数是24、25、26等的题进行了强调,例如:195÷26=?把26想成25,25×8=200,所以商试7。之后巩固记忆25×4=100、25×5=125、25×6=150、25×7=175,25×8=200等。
课后,通过学生的作业,针对出现的`问题,我又进行了针对性的练习。另外,在做完题后,让学生加上了验算,使其能够自我验证,自我检查,反而出错的几率小了很多。然后还让学生每天花上几分钟进行口算练习,为笔算打好基础。
新授中,当学生列出三个算式时,不是急于讲解,而是又引导学生比较与以前所学的知识的异同,2人小组交流,及时把学生拉向主动探索新知的途径。
二、练习扎实有效,总结及时。
在练习设计中,教师并没有追求数量,而是在做每一道题中都让学生讲解计算过程,让学生真正的学有所获,在最后还总结了计算的方法,教学效果很好。
三、本次教研活动的主题是课前预设与课堂生成的有效融合。
在边做边练习的过程中,教师可以及时把学生的错误方法呈现出来,然后供大家参考,有效率极高,在练习被除数末尾有0,商的末尾也一定有0吗?举了不同的例子,从事实上说明了正确与否,让学生印象深刻。建议:在让学生说过程时是很有必要的,但是可以选择性的,这样可以为后面更丰富的练习留下时间。
《除数是两位数的除法》教学反思 15除数是两位数的除法是小学生学习整数除法的关键阶段,教学重点是确定商的书写位置,除的顺序及试商的方法,帮助学生解决笔算的算理;难点是试商的方法。学生以前学习过除数是一位数商是一位数或两位数的除法,教学时让学生回忆以前的知识,特别是除法的笔算方法,然后学习除数是两位数的除法的笔算方法,让学生在原有知识的基础上理解商的书写位置,除的顺序等基本问题,然后着重解决试商的问题。教材中安排了四组例题,分层次、分阶段分化了重点,分散了难点。例1主要解决试商、商的书写位置等问题;通过例2的教学使学生学会用四舍五入法把除数看作整十数来试商。例3的教学要使学生认识到要根据具体的情况采用不同的方法来试商。例4教学商是两位数的除法。
从这一单元的教学中,我意识到,教材只是一个教学工具,应该是“用教材”,而不是“教教材”。在使用过程中,应该结合学生实际,灵活的使用教材,学生初步学习除数是两位数的笔算除法,用四舍五入把除数看作和它接近的整十数进行试商后,学生试商时困难较大,在教给学生基本方法的同时,还应适当补充一点试商的小窍门。比如当除数的末尾数是1或9时,用四舍五入法一次试商即可成功。而当除数的末尾数是2、3、6、7、8时,在试商过程中,一般都要调商。当除数末尾数是4或5时,往往要经过多次调试方能求出商数来。在这种情况下,四舍五入法就显得不适应了,因为所取的近似数与原除数误差较大。
尽管教学时已给学生总结出了“用四舍”时,因把除数看小了,初商容易偏大,试商时可比原来想的商小1,而“五入”时,因把除数看大了,初商容易偏小,试商时可比原想的商大1。而学生在具体的计算中,还是感到很困难,造成了试商速度慢。针对这种情况,练习课中,在学生应用“四舍五入”法和口算方法试商的基础上,还要有针对性的帮助学生提高灵活试商的方法,如:4512÷47136÷26首先让学生确定商是几位数,初商在哪位,然后让学生讨论:被除数、除数有什么特点,该怎样试商?在此基础上,总结出了①同头试商法:如4512÷47这道题,因为除数和被除数的首位相同,而被除数的前两位小于除数,可以直接商9,比较简便。
计算教学要注意引导学生理解算理。在本节课的教学中,我通过问学生:“你是怎样想的?”来引导学生说出自己的想法,而学生的想法中往往就包含了对算理的理解,如果学生对算理的理解不够明确我又通过追问的形式,作进一步的引导,如在学生解决了前两个问题后追问:“为什么要把除数看作整十数来试商?”在学生完成试一试的两道题后追问:“为什么你要把28看作30来试商,看作20来试商不可以吗?”这样一来,就能加深对算理的理解。计算教学,只有算理理解了,学生才能掌握计算方法,提高计算的正确率,也才能运用计算去解决生活中的问题。
本节课因为学习了除数是整十数的的除法,所以我主要是放手让学生自己来探究,而在学生探究的过程中,我又特别关注学生的`错例,并把这些错例展示出来,让学生来评议。由于学生在课堂中出现的错误都是有一定原因,学生在对错例的评议过程中,弄清了错误的原因,从而避免了课堂暴露的问题转移到课后。在学习的过程中,我关注了学生主体性的发挥,让学生自主探究、合作学习,使每一个孩子都能做一个新知识的发现者、研究者、探索者。在这节课的教学中,使我的教学品质得到了一定提升。在以后的教学实践中,我会帮助学生发现、组织和管理知识,引导他们;要学生以自己真实的感受去体验、理解;要让更多的学生尝试成功的喜悦,让学生自始自终参与到知识形成的全过程。
现在,我深深地感到:要上好一节课,教师必须有所付出,学生才会学生踏实。
文档为doc格式