一元二次方程数学教学反思
身为一名人民老师,我们需要很强的教学能力,我们可以把教学过程中的感悟记录在教学反思中,优秀的教学反思都具备一些什么特点呢?以下是小编为大家收集的一元二次方程数学教学反思,仅供参考,希望能够帮助到大家。
一元二次方程数学教学反思1新课程要求培养学生应用数学的意识与能力,作为数学教师,我们要充分利用已有的生活经验,把所学的数学知识用到现实中去,体会数学在现实中应用价值。
这节课是“列一元二次方程解应用题(3),讲授在营销问题中以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题。这类注重联系实际考查学生数学应用能力的问题,体现时代性,体会数学在现实生活中的作用。
通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:
一、课前准备的内容了解一元二次应用题的步骤,本节课的学习需准备的两个关系式。设计三个列代数式的题为学习例题时降低难度。
二、本节课例题,是营销问题中的一个典型例题,我在引导学生解决此题时,不仅关注结果更关注过程,让学生养成良好的解题习惯。
三、通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力逐级上升。在讲完例题的基础上,将更多教学时间留给学生,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。
四、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。
五、课堂上多给学生展示的机会,比如我所设计练习题可用不同方法去求解,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。
六、需改进的方面:
1、由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如练习题1有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示。
2、在激励评价学生方面做胡还不够,例如学生在解决自主探究最后一个题目时,有同学利用第三种方法很巧妙,当时没有给予学生很好的激励及评价
3、下课后很多学生和老师沟通课上一生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表
一元二次方程数学教学反思2一、教学之前的思考
基于对教材的分析,我把重心放在关注学生的学法上。通过分析本章的难点和所教班的实际情况,我认为教学的难点在于如何理顺配方法、公式法、分解因式法之间的关系以及如何利用一元二次方程解应用题。
二、实施教学所遇到的难点
在把握了本章的重难点之后,我把教学中心放在解一元二次方程的三种方法之间的联系上。在实际的教学过程中,学生虽然已经清楚三种方法之间的内在联系,但同时也存在以下两方面的问题:第一、基本运算不过关。绝大多数同学都知道解方程的方法,但却不能保证计算的准确性。这里也透露出新教材的一个特点:很重视学生思维上的培养,却忽视了基本计算能力的训练,似乎认为每个学生都能达到一学就会的理想境界。第二,解方程的方法不灵活。学习了三种方法之后,知道了公式法是最通用的方法,所以也就认为公式法绝对比配方法好用多了。但实际并非完全如此,通用并不意味着简单。
三、教学后的及时改进
为了解决"配方法、公式法"谁更好用?很多学生都明白公式法是在配方法上基础上的推导出来,并且有一个通用公式可算,所以学生潜意识已经认为公式法更简单
通过现场测试,很多同学又一次回到首先移项,接着只能用公式法的做法上。其实,在这里学生让没有抓住配方法的精髓。这两题依然是可以用配方法,而且很快就可以解出来。
四、反思
1、备课应该更加务实。
在以后教学中,我要吸取这一章教学的有益经验。不仅要抓整体,更要注意一些重要细节,及时发现教学工作中可能存在的隐性问题。例如:按照惯例,对于应用题学生的难点都在于如何找等量关系和列方程,故最容易忽视的是解方程的细节。例如上文中的例4,很多学生在学习公式法之后,都会很自然将方程的左边展开,继而使用公式法,从而解方程会变得十分复杂。
2、在教学中如何能够使学生学得简单,让学生的学习热情高涨。
五、教材的独到之处
教材有很多闪光点,让人耳目一新,极大调动了学生创造热情。例如课本上很多应用题都来源生活,贴近学生实际,增强了学生应用数学的意识和能力。
例如1:新华商场销售某种冰箱,每台进货价为2500元。市场调研表明:当销售价为2900远时,平均每天能销售8台;而当销售价每降低50元时,平均每天就能多售出4台。商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?
2、如图,在一块长92米、宽60米的矩形耕地上挖三条水渠(水渠的宽都相等),水渠把耕地分成面积均为885平方米的6个矩形小块,水渠应挖多宽?
3、某农场要建一个长方形的养鸡场,鸡场的一边*墙(墙长25米),另三边用木栏围成,木栏长40米。
(1)鸡场的面积能达到180平方米吗?能达到200平方米吗?
(2)鸡场的面积能达到250平方米吗?
如果能,请你给出设计方案;如果不能,请说明理由。
在这里我重点谈谈第3题;这是一个很现实的生活问题,很能调动学生的创造热情,但同时很容易被生活中的经验所蒙蔽。很多同学认为,要使鸡场的面积最大,当然要把25米的墙完全利用起来,所以最大的面积应该是平方米,故很快可以解决问题,鸡场的面积能达到180平方米,不可能达到200平方米。实际上当真如此吗?这时引导同学利用数学知识,构建数学模型来解决问题。问题中设问"能达到的200平方米吗?"。设这时的养鸡场宽为X米,则养鸡场的长为(40-2X)米,根据题意,可得到,经过计算,,从而得出一个出乎意料的结果:不仅能达到200平方米,而且养鸡场的墙体不需完全利用,只需要它的一部分,这时学生体会到,即使整面墙都用上,它的面积并不是最大的。
一元二次方程数学教学反思3在日常生活中,许多问题都可以通过建立一元二次方程这个模型进行求解,然后回到实践问题中进行解释和检验,从而体会数学建模的思想方法,解决这类问题的关键是弄清实际问题中所包含的数量关系。
本节内容教材提 ……此处隐藏7010个字……每天可售出20件,每件盈利40元。为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现:如果每件童装降价1元,那么平均每天就多售出2件。要想平均每天销售这种童装盈利1200元,那么童装应降价多少元?
解:设平均每件童装应降价X元,由题意得:
(40—X)(20+2X)=1200
解之得 X1=10 , X2=20
X1=10 ,X2=20均达到了扩大销售量,增加盈利,减少库存的目的,所以都满足题意。
答:要想平均每天销售这种童装盈利1200元,那么每件童装应降价10元或20元。
对于我的解题思路,善于动脑筋的学生提出不同的质疑:(1)降价20元,薄利多销,更能减少库存,应选最优的方案。所以只选取X=20。(2)降价10元,每天销售40件,同样能盈利1200元。库存部 分还可继续盈利,这样在减少库存的基础上能进一步增加盈利,所以只取X=10。学生的不同见解,说明学生善于动脑思考,我及时给予了鼓励;要敢于向教材挑战、敢于向老师质疑。而对于这道题最合理的解法,我们师生共同关注、共同探讨。
课后,我与同行交流、查阅资料,并利用星期天到新华书店、新奇书店、教育书店翻阅教辅资料。经过一星期的查阅搜集,我筛选了一组类型题,课前印发给同学们,在课堂上进行专题学习,师生带着困惑共同去探究。
教学目标:
1、进一步培养学生运用一元二次方程分析和解决实际问题的能力,再次学习数学建模思想。 2、将同类题对比探究,培养学生分析、鉴别的能力。
教学重点:
培养运用一元二次方程分析和解决实际问题的能力,学习数学建模思想。
教学难点:
将类同题对比探究,培养学生分析、鉴别的能力。
教学内容:
第1题选自九年级数学《教师教学用书》102页测试题第13题(见上)。
第2题:选自九年级数学《学苑新报》第4期第15题。某市场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元, 为了扩大销售,增加利润,尽量减少库存,市场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
第3题:选自九年级数学《新课标点拨》270页第27题。某商场销售一批儿童玩具,若每天卖20件每件可盈利40元 ,为了扩大销售,尽快减少存库,商场决定采取适当的降价措施,调查发现,若每件玩具每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,那么每件玩具应降价多少元?
第4题:选自阶段性教学质量评估检测第4页第七题。西瓜经营户以2元/千克的价格出售。每天可售出200千克,为了促销,该经营户决定降价出售,经调查发现,这种小型西瓜降价0.1元/千克,每天可多售出40千克,另外,每天的房租和固定成本共24元,该经营户要想每天盈利240元,应将小型西瓜每千克售价降低多少元? 课堂上学生积极参与探究、分析对比得出:第(1)、(4)两题的两个答案都满足题意。第(2)、(3)两题为尽快减少库存,只选取降价多的那个答案(这与资料中的答案相吻合)。学生进一步总结、归纳得出:若题中强调尽量减少库存或尽快减少库存,应只选取降价多的那个答案。若题中没有特殊要求,那么两个答案都满足题意。
一元二次方程数学教学反思13方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:
本节课的整体过程是这样的,通过三个例题让学生掌握一元二次方程根的判别式及根与系数关系的应用,总的来说,虽然课堂上同学们总结错误不少,总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了。学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。
另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。
一元二次方程数学教学反思14学好一元二次方程,重要的是要学会背公式。除了最主要的求根公式你要背熟外,就是要学会总结不同方程解决形式。形如x+2bx+b=0,你要能熟练的将其变为(x+b)=0这样的形式;形如x+(a+b)x+ab=0的形式,你要熟练将其变为(x+a)(x+b)=0;再高阶的,二次项前面也有系数的,你也要学会变形。总之掌握将普通二项式变为两个一项式的乘积是你必须要掌握的。当你变不了的时候,你就要使用求根公式来解决。
方程类问题都是如此求解的。二次方程求解方法的核心,是使其转变为一次方程来求解。三次方程这是转变为二次方程与一次方程的乘积求解。越往后越是这样。求解的主旨是降幂。使高次项变为多个低次项的乘积是求解方程的指导思想。可能你只是一个小学生或是初中生,你不一定明白这个道理,但是随着学习的深入,你要去思考。我给出了解决的一般路径,但要熟练的掌握仍旧需要不停的解题做题,通过练习来掌握。一元二次方程并不难,相信以你的聪明与勤奋一定会早日掌握的。
一元二次方程数学教学反思15利用求根公式解一元二次方程的一般步骤:
1、找出a,b,c的相应的数值
2、验判别式是否大于等于0
3、当判别式的数值符合条件,可以利用公式求根、
学生第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多、
1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号
2、求根公式本身就很难,形式复杂,代入数值后出错很多、
其实在做题过程中检验一下判别式这一步单独提出来做并不麻烦,直接用公式求值也要进行,提前做这一步在到求根公式时可以把数值直接代入、在今后的教学中注意详略得当,不该省的地方一定不能省,力求达到更好的教学效果、
通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,激发了学生思维的火花,具体有以下几个特点:
本节课第一个例题,我在引导解决此题之后,总结了利用求根公式解一元二次方程的一般步骤,不仅关注结果更关注过程,让学生养成良好的解题习惯。
例2、3是例1的变式与提高,通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力提高,这是这节课中的一大亮点,在讲完例题的基础上,将更多的时间留给学生,这样学生感觉到成功的机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流,相互学习,共同提高。
课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。总之通过各种激励的教学手段,帮助学生形成积极的学习态度,课堂收效大。
需要改进的方面,由于怕完不成任务,教师讲的还是多了些,以后应最大限度的发挥学生的主体作用。
文档为doc格式