【精华】小学数学教案模板汇编10篇
作为一名辛苦耕耘的教育工作者,就有可能用到教案,借助教案可以提高教学质量,收到预期的教学效果。怎样写教案才更能起到其作用呢?下面是小编整理的小学数学教案10篇,欢迎大家分享。
小学数学教案 篇1一、学习目标
(一)学习内容
义务教育教科书(人教版)一年级下册第8页~第11页,及练习二的第1--3题。
十几减9是20以内退位减法的第一课时,是今后学习十几减几,多位数计算和其他数学知识最基础的部分。通过创设实际问题的情境,列出减法算式。让学生通过操作活动,理解算理,并形成的算法,形成运算能力。
(二)核心能力
《十几减9》属于数与代数领域内容,通过本单元学习,使学生能熟练地口算20以内的加减法,经历与他人交流各自算法的过程,培养运算能力。
(三)学习目标
1.通过观察和操作,合作探究,会用自己的语言表达与同伴交流15-9的计算方法。
2.在展示交流中,体会15-9算法的多样化,通过对比分析,会选择优化的方法,提升运算能力。
3.在解决问题的过程中,感受数学来源于生活,能运用十几减9正确解决生活中相关的实际问题。
(四)学习重点
掌握十几减9的计算方法。
(五)教学难点
理解“破十法”的计算算理和方法。
(六)配套资源
实施资源:《十几减9》名师教学课件、《十几减9》课时作业。
二、学习设计
(一)复习导入
1.拍手游戏:10的组成。
我拍1,你拍9,1和9组成10。
我拍2,你拍8,2和8组成10。
…………
9和几可以凑成10?看到9想到几?8和几凑成10,看到8想到几?
2.复习十几的组成
师:比一比,看谁抢答的快。16可以分成10和几?12可以分成10和几?19可以分成10和几?
(二)探究新知
1.观察主题图,提出问题
师:这是游园会活动,说一说你看到了什么?发现了哪些数学信息?
指导观察方法:观察图上的信息要有一定的顺序,结合具体的每项活动说说你发现的数学信息,并提出数学问题。
师:咱们一起看小丑卖气球这幅图:你发现了哪些数学信息?能提出一个数学问题吗?
预设:小丑有15个气球,卖出9个,还剩多少个?
师:今天我们就一起来研究十几减9的口算方法。
设计意图:主题图中活动项目很多,数学信息很零碎,教师引导学生有序观察,收集信息和提出与信息相关的问题,初步培养学生有序观察,找与对应信息相关,并提出问题的逻辑分析能力。
2.探究十几减9的计算方法和理解算理
(1)列出算式,自主尝试计算
师:要求“气球还剩多少个”怎样列式?板书:15-9=
(2)操作与思维、表达相结合,理解算理,提升算法
师:15个气球,拿走9个该怎么拿呢?先想一想,再拿一拿,然后和同桌说一说你是怎么拿的。
学生活动汇报预设:
方法一:从15根小棒的下面先拿走5根,再从上面一行拿走4根,还剩6根。
师:刚才这个同学是怎么拿的?谁听清楚了,谁能上来边说边拿?
教师结合情况边说边逐步形成板书:
师:刚才我们是先从下面拿走5根,再从上面拿走4根,实际上是把9分成了5和4,先算15里面的5-5,再算15里面的10-4=6.
师:谁能像老师这样,结合刚才拿的方法来说一说15-9可以怎么算?
(一生照样子说后,同桌相互说一说计算过程)
师:谁还有不同的拿法吗?
方法二:从上面一并拿走9根,还剩1根,和下面的5根合起来是6根。
师:谁能结合他的拿法来说一说15-9可以怎么算?
(同桌相互说一说,找个别学生汇报)
生:先把15分成10和5,从10里去掉9,剩下的1与5合起来是6。
板书:
师:“10”表示哪些小棒?为什么把15分成5和10?“1”表示哪根小棒?“5+1”表示什么意思?
师:你能给这个方法起个名字吗?
动手操作重点理解“破十法”的算法和算理
(1)画出15个圆,左边10个,右边5个。
(2)从中圈出9个,想一想怎么圈。
结合画图过程,用语言表达计算过程。先算什么?再算什么?并完成下面括号的填写。
15-9=()因为()-9=(),()+5=()
师:谁还有不同的方法?
生:想加法算减法,因为9+6=15,所以15-9=6
师:刚才我们在计算15-9=?时想到了不同的方法,有的想加算减,有的是把15分成10和5,先算10-9=1,再算1+5=6,有的是先算5-5=0,再算10-4=6你最喜欢哪种方法?
设计意图:让学生从操作辅助到离开学具操作进行表象操作,从结合操作活动到分析算理,到逐渐脱离操作说明算理,教学过程的展开“扶得合理,放得适度”,思维层次不断提升,知识不断内化。
3.巩固练习
(1)圈一圈,算一算。
师:怎么计算12-9=?先圈一圈,再说一说你是怎么算的,先算什么?再算什么?
生:10-9=11+2=3
师:不操作,你能直接说说怎么计算14-9=?
设计意图:学生通过动手操作、闭眼想象、归纳,将操作、语言和算式充分地联系起来,从而将多种表征方式相结合,帮助学生理解用“破十法”计算15-9的算理。
(2)圈一圈,算一算:独立完成课本第10页“做一做”第2题。
(3)完成练习二第1题。
(三)课堂
全班交流,今天你学会用哪种方法计算十几减9的算式?你更喜欢哪种计算方法?
(四)课时作业
1.练习二第2题送信。
先让学生进行游戏,游戏完之后把信件按顺序:11-9、12-9、13-9、14-9、15-9、16-9、17-9、18-9
师:大家有什么发现?
师:十几减9的差为什么比被减数个位上的数多1呢?
师:你更喜欢用哪种方法计算十几减9?
用你喜欢的方法计算。
11-9=13-9=16-9=18-9=17-9=
师巡视,观察学生选择的计算方法,学生汇报,交流自己的计算方法。
知识点十几减9的计算方法。
答案略
解析通过游戏形式练习,了解学生对十几 ……此处隐藏7852个字……/p>
师:今天,我们上了一节有趣的数学课,你们玩得快乐吗?能说说你的收获吗?
小学数学教案 篇9教学内容:完成“练习与应用”的第6、7题,“拓展与实践”,“反思”等。
教学目标:
1、使学生系统地掌握长方体、正方体、圆柱体、圆锥体的体积公式,理解这些体积公式之间的内在联系。
2、熟练地针对不同的情况运用不同的公式进行计算,使学生运用知识解决实际问题的能力有进一步的提高。
3、在合作交流的过程中培养学生的合作意识和创新能力。
教学重点:灵活运用所学知识解决有关实际问题。
教学难点:培养学生的空间想象能力和创新意识。
教学过程:
一、导入
1、提问,引导学生讨论:
(1)长方体、正方体、圆柱体、圆锥体的体积公式各是什么?它们的体积之间有什么关系?
(2)长方体、正方体、圆柱体、圆锥体的底面积相等、高也相等它们的体积之间有什么关系?
(3),板书关系.
2、基本练习:
将一个正方体木料加工成最大的圆柱体木料、圆柱体与正方体有那些相等的关系?如果将一个正方体木料加工成一个最大的圆锥体木料、正方体木料和圆锥体木料又有那些相等的关系?
通过上述两题的比较,让学生理解底面积相等、高相等与底面直径相等高相等之间的'区别。
3、公式推导的深化理解。
(1)提问:在圆柱体的推导过程中,圆柱体分成若干等份后拼成的长方体的表面积和圆柱体的表面积相比是如何变化的?如果圆柱体的高为4分米、拼成长方体以后表面积增加了48平方分米,原来圆柱体的体积是多少立方分米?
(2)学生交流发言。
(3)教师引导:回忆推导过程,有什么收获?
二、实践应用
1、实际生活中的问题与数学知识的合理搭配。
(1)一个圆柱体的罐头盒外面贴商标纸,求商标纸的面积是求什么?你还知道生活中有那些地方是求物体的侧面积的?
(2)要做一个圆柱底面油桶现在已经有了一块长25.12分米,宽5分米的铁皮,现在要给它配上合适的底和盖,需要边长几分米的正方形几块?做成的圆柱体的容积是多少?
2、先实际测量,再运用所学的知识计算。
分小组测量并计算。
(1)每组先出示一个茶杯,量出有关的数据,算出茶杯的容积。
(2)给每组一个土豆,利用刚才的茶杯让学生想办法测量出土豆的体积。
3、解决问题。
讨论解决第6题。
根据学生的解答教师质疑:
除了题目中画图的摆的方法外有没有其它方法?你能算一算其他方法摆时纸箱的长、宽、高各是多少吗?
题目中所用的方法是不是用的硬纸板最少?
学生交流
讨论解决第7题。
评议、交流
4、完成探索与实践
探讨、交流
三、
你有何收获?反思
学生交流
四、作业
完成《练习与测试》相关作业
板书设计
与练习
小学数学教案 篇10教学目标
1.理解工程问题的数量关系,掌握工程问题的特征,分析思路及解题的方法.
2.能正确熟练地解答这类应用题.
3.培养学生运用所学到知识解决生活中的实际问题.
教学重点
理解工程问题的数量关系和题目特点,掌握分析、解答方法.
教学难点
理解工程问题的数量关系.
教学过程
一、复习 旧知.
(一)解答下面应用题
1.挖一条水渠100米,用5天挖完,平均每天挖多少米?
列式:100÷5=20(米)
2.挖一条水渠,用5天挖完,平均每天挖全长的几分之几?
列式:
教师提问:上面这两道题研究的是哪三种的关系?已知什么,求什么?
学生回答:上面两道题研究的是工作总量,工作时间和工作效率的三量关系,已知工作总量和工程时间,求工作效率.
3.挖一条水渠100米,平均每天挖20米,几天可以挖完?
列式:100÷20=5(天)
4.挖一条水渠,每天挖全长的 ,几天可以挖完?
列式: (天)
师生小结:上面3、4两题研究的是工作总量、工作效率和工作时间问题.已知工作总量,工作效率求工作时间.
二、探索新知.
(一)教学例9.
例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?
1.教师提问:
(1)用我们学过的方法怎样分析?怎样解答?
30÷(30÷10+30÷15)=6(天)
(2)把上题的一段公路完成60千米、90千米、30千米、24千米等如何分析解答?
60÷(60÷10+60÷15)=6(天)
90÷(90÷10+90÷15)=6(天)
24÷(24÷10+24÷15)=6(天)
(3)通过计算,你发现了什么?(结果都相同)
(4)为什么结果都相同呢?
工作总量的具体数量变了,但数量关系没有变;工作效率是用“工作总量÷工作时间”得到的,所以工作效率是随着工作总量的变化而变化的.因此它们的`商也就是工作时间不变.)
(5)去掉具体的数量,你还能解答吗?
把这段公路的长看作单位“1”,甲队每天修这段公路的 ,乙队每天修这段公路的 .两队合修,每天可以修这段公路的( )
列式:
2.教师:这就是我们今天学习的新知识.(板书课题:工程问题)
3.归纳总结.
4.小组讨论:工程问题有什么特点?
工作总量用单位“1”表示,工作效率用 来表示数量关系:工作总量÷工作效率(和)=工作时间
5.练习.
(1)一项工程,甲队单独做20天完成,乙队单独做要30天完成,如果两队合作,每天完成这项工程的几分之几?几天可以完成?
(2)加工一批零件,甲单独用12小时,乙单独做用10小时,丙单独做用15小时.甲、丙两人合作,多少小时完成?甲、乙、丙三人合作多少小时可以完成?
三、巩固练习.
(一)选择正确的算式.
一堆货物,甲车单独运4小时可以完成,乙车单独运6小时可以完成,现在由甲、乙两车合运这批货物的 ,需要多少小时?正确列式是( )
四、归纳总结.
今天我们这节课学习了新的分数应用题—工程应用题.其解答特点是什么?(工作总量÷工作效率和=合作时间)工程应用题的结构特点是什么?(把工作总量看作单位“1”,工作效率用“ ”表示.)工程应用题还有很多变化,以后我们继续学习.
文档为doc格式